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Laboratory experiments were conducted in a water tank to investigate the rise through
the atmosphere of thermals generated by the detonation of surplus military munitions.
The fall of a dense volume of fluid through the water in the tank follows the same
governing equations as the rise of a buoyant volume of gas in the atmosphere. By
filling the tank with a layer of water and a layer of salt water, an elevated step
change in density was obtained, simulating a temperature inversion or jump in the
atmosphere. The growth of the linear dimensions of the thermal and its volume were
determined and used in the development of a criterion for predicting when a thermal
will fully penetrate the inversion. Replacing the second layer of fluid with water of
gradually increasing salinity, an elevated constant density gradient was obtained. In
these cases, the maximum penetration distance of the thermal was observed and the
equilibrium position and vertical spread were determined experimentally.

These observations and the empirical relationships determined from them should
prove useful in the development and evaluation of air pollution dispersion models for
predicting the atmospheric transport and diffusion of material released during such
detonations.

1. Introduction
The most common method for disposing of obsolete military munitions is by

open detonation in an earthen pit. Currently, small batches of material (100 to
5000 lb) are destroyed by such means, and they leave behind buoyant thermals or
clouds of contaminants. Open detonation is at present restricted to daytime when
atmospheric dispersion is most rapid and generally occurs within a deep convective
boundary layer (CBL) or mixed layer that is capped by a temperature inversion. An
important question concerns the rise and spread of buoyant thermals and their ability
to penetrate the elevated inversion, above which they would be subjected to different
wind speeds and directions than in the CBL. This question and evaluation of the
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effects of detonating larger quantities are being pursued by the development of new
dispersion models (Weil et al. 1996), but a key requirement is new experimental data.

This paper reports on laboratory simulation of the rise and spread of buoyant
thermals and, in particular, their inversion penetration capability. The present study
provides a fundamental database and empirical descriptions of the physical processes
involved for evaluation of these dispersion models.

While the ultimate goal of this effort is to understand the processes involved for
a thermal rising through a convective boundary layer, these laboratory experiments
were carried out at reduced scale in a quiescent tank. The scaling of the atmospheric
variables followed the usual requirements (Snyder 1981). Of course, the Reynolds
number of the atmospheric thermals could not be matched in the laboratory and the
principal of Reynolds-number independence was applied. The dense volumes of water
released in the laboratory tank generated highly turbulent thermals and, although their
Reynolds number is much less than that in the atmosphere, the turbulent behaviour
is similar. The intensity of the turbulence generated within a thermal is much greater
than that of the ambient atmospheric CBL. Photographs and video recordings fre-
quently show strongly buoyant mushroom clouds that rise through the atmosphere
without being strongly distorted by the ambient turbulence, and this process is easily
simulated in our quiescent tank. Weak thermals which rise more slowly will be more
strongly affected by ambient turbulence; the current study provides the first step in
understanding the physical processes involved – the rise of thermals through a non-
turbulent environment. Further studies are underway in our convection tank to aid
understanding of the interaction of buoyant thermals with strong ambient turbulence.

Our study progressed in phases. First, we evaluated the growth and rise of a thermal
in a neutral environment. Second, we determined the fraction of the thermal that
penetrated an elevated inversion (step change in density) above a neutral surface
layer. Third, for thermals released into a neutral layer followed by a stratified layer
with a constant density gradient, we investigated the maximum penetration height,
the equilibrium height at which the thermal ceases vertical motion, and the vertical
thickness at this equilibrium height. Finally, we explored how a step change in
density at the base of the constant gradient region influenced the thermal. Laboratory
techniques were developed for the simulation and measurement of the motion of
thermals under these conditions.

Morton, Taylor & Turner (1956) and Turner (1957) were pioneers in the laboratory
investigation of the rise of buoyant thermals. By injecting small volumes of buoyant
fluid through an opening in the bottom of a water tank, they created buoyant thermals
with substantial vertical momentum. Their thermals had significant initial circulation
and thus formed highly organized vortex rings. In contrast, our thermals were released
from a rotating cup with no initial vertical momentum and effectively zero initial
circulation. Turner (1986) points out that ‘important properties of thermals can be
understood better if they are regarded as a special case of a buoyant vortex ring. . .’. He
further explains that ‘For a thermal, the circulation is generated by buoyancy, whereas
in a vortex ring, the buoyancy and circulation. . . can be specified independently at the
source’. Because of the limited influence of circulation in our study, we concentrate
on the bulk properties of the thermals, expecting the only rotational effects to be
those generated by the buoyancy.

Two previous experimental studies (Richards 1961 and Saunders 1962) were used
as the basis for the design of the present one. A dense volume of dyed fluid was
initially contained inside a hemispherical cup such that its upper surface matched
the water surface in a water tank; the cup was quickly rotated, thus instantaneously
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releasing a hemispherical thermal at the water surface. The negatively buoyant fluid
falling through the tank models a buoyant thermal rising through the atmospheric
boundary layer where variation in the tank fluid density corresponds to variations in
atmospheric potential temperature. Richards photographed thermals falling through
his tank; the photographs were used to determine the location and size of the thermals
as functions of time. In the present study, application of video recording and computer
graphic analysis greatly facilitated the data reduction.

In general, the geometric relationships of Richards (1961), Saunders (1962) and
Scorer (1957) were found to represent the growth of thermals in a neutral environment
as obtained in the current study. These authors reported that the horizontal dimension
of a thermal is proportional to its distance from a virtual origin (the position it would
have started from if it had started at a point). However, the variability in the
proportionality constant in our results is much less than that of Richards.

For his step change in density experiments, Richards defined a non-dimensional
parameter S = V (ρ2 − ρ1)/M as a measure of the strength of the density change
across the interface compared with the buoyancy of the thermal as it straddled the
interface. V is the measured volume of the thermal when its widest span is at the level
of the interface, (ρ2−ρ1) is the density change across the interface, and M is the excess
mass of the thermal (mass of the thermal minus the mass of an equivalent volume
of water from the upper layer). Richards found that the fraction of the thermal that
penetrated the interface decreased linearly as S increased from 0.1 to 1.9. When using
our measured volumes (obtained when the thermal centroid was at the interface), we
found a similar linear dependence, but over the range in S from 1.0 to 2.9. For S less
than 1.0 we observed essentially complete penetration. Richards’ formulation used
the measured volume of the thermal when its widest point was at the interface. We
prefer to use a predictive approach and obtain an estimate for the thermal volume
when the centroid is at the interface. By replacing the measured volume in Richards’
formula with this predicted volume, Vp, we define a new non-dimensional parameter
∆ = Vp(ρ2 − ρ1)/M, whose value determines whether or not penetration occurs.

Thermals were also released into a neutral layer that was followed by a constant
density gradient region. A neutral layer capped by a stable layer is an idealization of
the CBL (Perry & Snyder 1989; Wyngaard 1988) in which most munition detonations
occur. An additional feature often observed in CBL temperature profiles is a finite
change in the potential temperature at the base of the inversion. As a cursory
investigation of this problem, two sets of experiments were conducted with a step
change in density at the base of the gradient. The thermal centroid, vertical spread
or standard deviation, and the maximum distance of thermal penetration into the
elevated gradient region were determined from measurements. Saunders’ (1962) theory
for the maximum penetration depth of a thermal released into an elevated gradient
environment is modified here to include a step change in density at the base of
the gradient. Observations of the maximum penetration depth compare well with
these predictions. The authors are not aware of any theories for predicting either the
equilibrium depth or thickness, but our data show that these quantities appear to be
related to the maximum depth.

2. Experimental details
The towing tank of the Fluid Modeling Facility of the US Environmental Protection

Agency was used as a saltwater stratified tank for this study (see Thompson & Snyder
1976). The tank was filled using standard techniques, typically to a depth of 108 cm.



130 R. S. Thompson, W. H. Snyder and J. C. Weil

Because our experiments were performed using falling volumes of fluid with a
density greater than the surroundings, we discuss them with the vertical coordinate z
measured positive downwards and using fluid density as the variable producing the
buoyancy (the heavy thermal has positive buoyancy in this coordinate system). This
approach is consistent with the theoretical development of Saunders (1962) which is
adapted herein. When applying our results to atmospheric situations, z is positive
upwards (measured from the Earth’s surface) and density is replaced by potential
temperature as the variable producing the thermal’s buoyancy. In addition, Richards
(1961) and Saunders (1962) describe the properties of a thermal as a function of the
depth of its front or cap. Because of the billowy shapes of thermals, protuberances
at the leading edge may increase the uncertainty in defining the front position and
increase the scatter in the measurements of that position. Thus, we also use the depth
of the centroid as an independent variable in characterizing the vertical position of the
thermal. The centroid is directly computed by the video analysis software. However,
in the presentation of the theory, we will retain Saunders’ use of distance to leading
edge for easy comparison with his results and because it simplifies the expressions for
entrainment at an interface.

Two data reports (Thompson & Snyder 1996a, b) present more extensive details of
the experimental setup as well as computer files containing the collected data.

2.1. Classification of density profiles

Neutral atmospheric conditions were simulated by filling the tank with fresh water.
We refer to neutral atmospheric conditions as a type-N environment. To model
atmospheric conditions with an elevated inversion, a dense saltwater layer was placed
below a fresh water layer to create an interface with a step change in density at a
specified depth; this is referred to as a type-S environment. For modelling an elevated
gradient, type-G environment, the density of each layer below a neutral layer was
incrementally increased to obtain the desired gradient. In one instance, a step change
in density was included between the neutral layer and constant gradient; we call this
a type-SG environment.

2.2. Measurement of density profiles

The technique for measuring vertical density profiles of salt water in the tank was
similar to that used by Richards (1961) and Saunders (1962). An aluminium disk
(9.7 cm diameter, 1.0 cm thick) was suspended in the tank on a length of monofilament
fishing line attached to a stabilizing brass tube extension on top of the disk. The top
end of the line was connected to an electronic balance that measured the weight of the
disk. The balance, with the weight attached, was raised and lowered to programmed
depths on a motor-driven platform. The entire system was computer controlled and
programmed to compute the density of the fluid by comparison of the weight of the
disk in the water and in air. The disk was very slowly moved between measurement
positions to minimize the disturbance to the surrounding fluid. At each measurement
position, the system was allowed to stabilize before recording the weight of the disk.

Examples of three density profiles measured prior to releases are shown in figure 1
for type-S, type-G, and type-SG environments. The small inadvertent jump at the base
of the gradient (z ' 31 cm) in the type-G profile was typical, but was not considered
to have a significant effect on the penetration process. Straight line segments were
drawn through the data to obtain the interface depth and the value of the gradient.
The profiles for the type-S and type-SG environment do not have perfect step-change
interfaces. Mixing during filling and molecular diffusion spread the density change
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Figure 1. Example density profiles in the water tank to simulate various atmospheric potential
temperature profiles: 4, type-S environment; �, type-G environment; e, type-SG environment.

over a few centimetres. The dashed line in the figure was the target profile for the
type-SG environment and was used to define the neutral layer depth.

2.3. Apparatus for releasing thermals

A thin-walled stainless-steel hemispherical cup was mounted on a shaft that was
rotated approximately 180◦ with a rotary pneumatic actuator. For each experiment,
a prescribed volume (and density) of a mixture of salt water and blue food dye
(typically 10% food dye by volume for the type-N and type-S experiments and 50%
for the type-G and type-SG experiments) was placed in the cup. The cup was lowered
into the tank until the level of the fluid in the cup matched the water level in the
tank and the trailing lip of the cup was adjusted to be approximately 1 mm above the
water surface. The rapid inversion of the cup resulted in a hemisphere of dyed fluid
heavier than its surroundings being left at the water surface. Through early trials, we
found that rotation of the cup in about 1

15
s produced a repeatable initial condition,

with the instantaneous appearance of a hemispherical thermal at the surface. To
investigate the effect of the size and shape of the initial cloud, cups of two sizes
(diameters of 7.6 and 10 cm) were mounted on shafts for easy interchange. For most
releases the desired density of the mixture in the cup was obtained using sodium
chloride (common salt). Solutions with density greater than 1.10 g cm−3 (i.e. a mass
excess M > 15 g) and those for releases in the type-N experiments using the smaller
cup were prepared using calcium chloride. The mass excess is the difference in mass
of the release solution and that of an equal volume of water from the neutral layer.
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Tail of thermal is
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Water level

Figure 2. View of a thermal from the video camera. The image is inverted to provide atmospheric
perspective. Front view is on the right, side view is on the left.

2.4. Experiments in type-N and type-S environments

The motion of the thermals was recorded on videotape with a camera positioned to
obtain simultaneous front and side views of the thermals. A frontal or direct view
was obtained in the usual manner, with the camera viewing the thermal against a
translucent panel illuminated from the back. A large mirror was placed to one side of
the thermal path at nominally 45◦ to the camera-view axis to obtain a simultaneous
side view of the thermal. The mirror was adjusted to reflect a view perpendicular to
the direct one and a second mirror was positioned to obtain a lighted background (as
for the direct view). Figure 2 shows a snapshot view from the video camera (inverted
to provide an atmospheric perspective) of a thermal in the tank. The camera signal
was routed through a time-marking device that added the time to each video frame.

A three-dimensional wire frame (two 25 cm squares in perpendicular vertical planes)
was suspended in the water with its top level with the water surface; this frame was
used to align the camera and mirrors. Prior to each series of experiments, a short
recording of the frame was made and used to define and scale the coordinate system
during the digital analysis of the thermal trajectories and shapes.

The video analysis procedure was as follows. The videotaped recording of each
experiment was copied onto an optical disk for random access and frame-grabbing
by a personal computer. Time t = 0 was taken as the time of the first frame after the
cup had rotated out of view. This frame as well as ten at later times were grabbed
for each thermal released and stored as TIFF (Tagged Image File Format) files;
duplicates were made to provide one set for front-view and another set for side-view
analysis. These TIFF files were individually loaded into a video analysis program that
displayed them on the monitor; outlines of the thermals were traced by the program
under the operator’s supervision. In particular, the small tail of dye left behind by the
falling thermal was omitted by directing the trace across the thermal’s trailing edge
at the operator’s discretion (see figure 2).

The program automatically determined several geometric parameters of the ther-
mals, including area, coordinates of the top and bottom, coordinates of the extreme
lateral boundaries, and location of the centroids. These values were transferred to a
spreadsheet file using direct data entry, wherein additional parameters were computed.
Using this information for each front and side view, we averaged the pairs of values
to determine the depths of the leading edge and centroid.

An estimate of the volume of each thermal was made by assuming that its shape
could be approximated by an oblate spheroid with volume (4/3)π(D/2)2(H/2), where
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D is the major axis (lateral dimension) and H is the minor axis (vertical dimension)
of the thermal. Because the front-and side-view images differ slightly, this is rewritten
using the front-view area Af , side-view area As and average vertical dimension DV
to obtain V = (8AfAs)/(3πDV ). Thus, estimates of the volumes of the thermals were
based on dimensions obtained directly from the video analysis. Of course, if the
thermal’s shape were a perfect spheroid, the volume computed in this manner would
be exact. As a demonstration of the error incurred if the thermal were not a spheroid,
we can apply the formula to a shape quite different from a spheroid, say, a cube
with faces perpendicular to the viewing axes; this formula estimates the volume to be
only 15% too low. Because the shapes of our thermals are, in general, much closer to
oblate spheroids, we expect the errors involved to be much less than 15%. Richards
(1961) used an integration approach to compute the volume; the procedure involved
dividing the thermals into horizontal slices, determining the front- and side-view
dimensions of each slice, and integrating the estimated areas of slices over the vertical
dimension of the thermal. His formula was based on the assumption that horizontal
slices of the thermal are elliptical, which seems to be quite similar to our approach
in that the thermal is a spheroid. Using Richards’ technique on three arbitrary front-
and side-view pairs of thermals resulted in video-analysis volumes 6%, 12%, and
−7.5% larger than the volume determined using our method. Considering the degree
of operator discretion involved in both methods, these rather small differences suggest
that the methods produce equivalent results.

We use the terms penetration to denote the thermal mass that passes through the
interface and penetration depth to denote the maximum depth that the thermal leading
edge attains. Our estimates of penetration were made by reviewing the video record
and estimating the fraction of each thermal’s mass that passed through the interface.
For discussion purposes, we assume rapid mixing inside the thermal, so that the
density inside the visible boundary is uniform. The density of a thermal decreases as
it entrains fluid in the neutral upper layer. If, after passing through the interface, the
thermal density is greater than that of the surroundings, it will continue to fall, with
essentially total penetration and infinite penetration depth. If the density is less than
that of the surroundings, the thermal will reverse direction and return to the interface.
Estimating the penetration from observations of thermals with small or large density
differences was rather easy. However, for intermediate cases, the estimation was
sometimes difficult. Typically, for the intermediate cases, some portion of the thermal
initially passed through the interface and, depending on the momentum and buoyancy,
that portion (i) reversed direction and returned to the interface, (ii) continued on to
some lower position, or (iii) stagnated. In some cases, the portion penetrating the
interface was observed to divide, with a portion returning to the interface and the
remainder continuing to fall. With this in mind, an initial penetration Pi was defined as
the fraction of the thermal that initially passed through the interface as an identifiable
mass. A final penetration Pf was defined as the fraction of the thermal that ultimately
continued to fall. Of course, for weak and for strong thermals, the initial and final
values were the same, 0 and 90% to 100%, respectively. (Even strong thermals lost
5% to 10% of their initial mass to the residual tail that remained in the upper
layer.) The initial and the final penetration values (estimated to the nearest 5%) were
obtained for all type-S experiments from analysis of the video record.

2.5. Experiments in type-G and type-SG environments

Elevated atmospheric temperature gradients were simulated by filling the tank with
layers of increasing (with depth) density below a neutral layer of essentially fresh
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Figure 3. Schematic of the system for sampling thermals at the equilibrium height.

water. Sets of up to eight repetitions of a given experiment were conducted by moving
the release mechanism to different positions along the tank. By quickly moving the
apparatus to a neighbouring position, an additional release was made before the
dye from previous releases spread into view. The careful alignment of the video
camera system required to obtain recording for video analysis of each release was not
practical. Therefore, to determine the penetration depth of thermals, a small diameter
gridded rod was suspended in the tank. The rod was placed well to the side of the
release cup to minimize interference with the thermals. For each release, an observer
would estimate the thermal penetration depth (to the nearest 5 cm) by sighting against
this rod.

A support for positioning a 10 × 10 array of sampling ports was attached to a
towing carriage such that the array could be moved through the dyed fluid as soon
as the thermal reached its equilibrium depth. A schematic of the sampling apparatus
is shown in figure 3. Both the vertical and horizontal spacings of the rake were
adjustable and set before each series of releases with the goal of just spanning the
width and the vertical thickness of the thermal. The uniform vertical and horizontal
spacings varied from 2 to 8 cm and 10 to 15 cm, respectively.

Each of the 100 sample ports was connected to an outlet port above a test tube
within a collection box. The sampling protocol was as follows. A rack of empty test
tubes was placed in the collection box. The box was sealed and pressurized to flush
out any residual fluid from the lines. A clamp closed off the sample lines and the
rake was lowered into the tank to a predetermined depth. A vacuum pump created
suction in the collection box. A thermal was released and observed until it had fallen
to its maximum depth, reversed its direction and reached an equilibrium depth, at
which time the towing carriage moved the rake through the thermal. The clamp was
released to initiate sampling just before the rake reached the thermal. After the rake
had passed completely through the thermal and the test tubes were full, the clamp was
reapplied to stop the sampling. The distance the sample rake travelled while the test
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Figure 4. Typical calibration curve for the colorimeter used for obtaining the dye concentration of
samples collected during the experiments.

Equilibrium height

Maximum height

r(t)

t = 0

Virtual origin

zo

zv

zc(t)
z(t)

z (t) + zv

zeq

zmx

z1

h1 h2

dh
dz

Figure 5. Variables to describe the rise of a buoyant thermal in the atmosphere. Invert the figure
and replace θ with ρ for water tank experiments.

tubes were being filled was measured and recorded. The volume of fluid represented
by the sample was computed by multiplying this travel distance by the vertical and
the horizontal spacing of the sample rake.

The light transmittance of the sample in each test tube was measured with a
Brinkman (model PC800) colorimeter connected to a personal computer for data
acquisition. A hand-held light probe was inserted into the fluid in each test tube,
and the output was sampled by computer. The colorimeter was calibrated (to convert
transmittance to concentration of dye) using carefully prepared known dilutions of a
source mixture. A typical calibration curve consisting of best-fit piecewise Beer’s-law
formulas is shown in figure 4. Concentrations of samples from ports that intersected
the thermal were typically between 0.01% and 0.25%, falling within a region of the
calibration curve that provided good resolution.
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3. Theoretical considerations
The descriptive variables for a thermal moving through a type-SG environment

are shown in figure 5. The motion of a thermal in type-N, type-S, and type-G
environments may be considered as special cases of this more general situation. A
thermal entering the constant gradient region attains a limiting or maximum height
where it stops; the height of the leading edge at this point is called zmx. The thermal
then moves back toward the interface and comes to rest with its centroid at an
equilibrium height zeq .

Richards (1961) and Scorer (1957) expressed the observed linear growth of thermals
with height (in non-stratified surroundings) as z = n1r, where z is the depth of the
front of the thermal and r is the lateral radius (see figure 5). We use this expression,
but explicitly include the virtual origin, i.e. (z + zv) = n1r. We also use the depth
of the centroid zc which is related to the radius as (zc + zv) = ncr. Given that the
radius grows linearly with height, we may expect that the vertical dimension of the
thermal does also. This leads to the expectation that the volume of the thermal is
V = β(z + zv)

3 = βc(zc + zv)
3, where β and βc are constants. The values for n1 and nc

varied from thermal to thermal, and we will use ensemble average values of β, and
βc to predict the growth.

Saunders (1962) derived and solved equations to describe the motion of a thermal
as a function of time t through type-N, type-S, and type-G environments. He made
simplifying assumptions about the entrainment of ambient fluid into the thermal
in order to solve the equations. His approach and nomenclature will be generally
followed here in solving the more general case consisting of a type-SG environment,
from which Saunders’ solutions can be obtained.

As presented by Saunders (1962), the governing equations for the mean motion
of a thermal, expressed in terms of its volume-averaged or bulk properties, are as
follows:
momentum

W
d

dz
(αVW ) = gBV , (3.1)

buoyancy

d

dz
(gBV ) = −Vg

ρ1

dρE
dz

, (3.2)

mixing

V = β(z + zv)
3, (3.3)

where W is the vertical velocity of the cap of the thermal, V the volume of the
thermal, ρE the volume average density of the fluid displaced by the thermal at depth
z, ρ1 the reference density (neutral layer), ρ the mean density of the thermal, B the
density excess of thermal, (ρ− ρE)/ρ1, α the virtual mass coefficient, dimensionless, z
the depth of leading edge below water surface and, zv the distance of virtual origin
above the surface.

The momentum equation is obtained from d(αρWV )/dt = gB1ρ1V using a
Boussinesq-type approximation ρ ≈ ρ1, except in the buoyancy term, and d/dt =
W d/dz. The buoyancy equation is derived from a conservation relation d(ρV )/dz =
ρ′EdV/dz, where ρ ′E is the average density of fluid entrained at depth z and ρ ′E ≈ ρE .
The mixing equation is an empirical expression for the thermal volume, where we
have explicitly included the virtual origin. Saunders (1962) points out that the mixing
equation can be readily shown to be a direct consequence of the mixing law of
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Morton et al. (1956) that the rate of entrainment of exterior fluid into a thermal is
proportional to its surface area and rate of advance.

These equations can be expressed in atmospheric variables by replacing density
with potential temperature θ and reversing the sign of the vertical coordinate; in
particular, B = (θ − θE)/θ1, and (1/ρ1)(dρE/dz) = (1/θ1)/(dθE/dz).

For an entrainment expression, Saunders (1962) assumed that ρ ′E = ρE and sug-
gested that ρE be approximated by the ambient density linearly averaged over the
vertical thickness of the thermal. An error in his expression for the entrainment at a
step change (the second part of his equation 8 should be dρE/dz = ((ρ2−ρ1)/l)(z1/z

2))
is corrected here. For a step change in density of ρ2− ρ1 at the interface (z = z1) and
a gradient of dρ/dz = N2ρ1/g beyond, we may show that

dρE/dz =


0, 0 < z < z1

((ρ2 − ρ1)/l)((z1 + zv)/(z + zv)
2)

+(N2ρ1/2lg)(1− (z1 + zv)
2/(z + zv)

2), z1 6 z 6 z2

(N2ρ1/g)((1− (l/2)), z2 < z,

(3.4)

where l = DV/(z + zv), DV is the vertical dimension of the thermal, and N =
[(g/ρ1)(dρ/dz)]

−1/2 is the Brunt–Väisälä frequency.
Note that the three regions of equation (3.4) correspond to the thermal (i) being

entirely in the neutral layer, (ii) straddling the interface, or (iii) being entirely in the
gradient layer. And, z2 is the height of the leading edge of the thermal when its
trailing edge is just touching the interface. From the definition of l, it follows that
(z2 + zv) = (z1 + zv)/(1 − l). Using Saunders’ notation, we define a non-dimensional
height ζ = (z + zv)/(z1 + zv), the non-dimensional height when the thermal has
just moved through the interface µ = (z2 + zv)/(z1 + zv) = 1/(1 − l), and ζp =
(zmx + zv)/(z1 + zv), the normalized maximum depth reached by the thermal. The
density gradient and step change in density at the interface are non-dimensionalized
as γ′ = N2(z1 + zv)/(2lgB1) = (z1 + zv)(dρ/dz)V1/(2lM) and γ = (ρ2−ρ1)/(2lgρ1B1) =
(ρ2−ρ1)V1/(2lM), respectively. Here, V1 is the volume of the thermal when its leading
edge first touches the interface, B1 is the corresponding value of B, and M is the mass
excess of the thermal while in the neutral layer. Note that the definition of γ is slightly
different from Saunders’, because of the correction to the term for entrainment at
the step change. In terms of atmospheric variables, γ = [V1(θ2 − θ1)]/[2lVo(θo − θ1)],
where θo and Vo are the initial potential temperature and volume of the thermal,
respectively, and γ′ = [(z1 + zv)/2l](dθ/dz)V1/[Vo(θo − θ1)].

3.1. Neutral layer (type-N environment)

Given a thermal with initial volume Vo, density ρo, and velocity Wo, with the leading
edge at a depth zo below the water surface at time t = 0, equations (3.1)–(3.3) can
be solved for a thermal in a neutral environment. Equation (3.2) is used to show that
gBV is a constant. Then, the expression for volume (equation (3.3)) is substituted into
equation (3.1) to give a first-order linear differential equation that is easily solved to
give

W 2 =
g(ρ0 − ρ1)V0

2αβρ1(z + zv)2

(
1− (z0 + zv)

4

(z + zv)4

)
+W 2

0

(z0 + zv)
6

(z + zv)6
(3.5)

and

z = −zv +

[
(z0 + zv)

4 + 4W0(z0 + zv)
3t+ 2

(
g(ρ0 − ρ1)V0

αβρ1

)
t2
]1/4

. (3.6)
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3.2. Type-S environment

Using the criterion that the thermal remain buoyant after passing through a step
change in density, an analytical expression may be obtained for determining when
infinite penetration height occurs. Setting the density gradient in equation (3.4) to
zero, substituting the result into equation (3.2) and integrating we find an equation
for the buoyancy of the thermal

ρ1gBV =


ρ1gB1V1, zv < z < z1

ρ1gB1V1[1− γ(ζ2 − 1)], z1 6 z 6 z2

ρ1gB1V1[1− γ(µ2 − 1)], z2 < z.

(3.7)

As Saunders (1962) pointed out, total penetration occurs if the thermal has positive
buoyancy after it has moved completely into the z > z2 layer, which occurs if
γ(µ2 − 1) < 1. Our experimentally determined parameters will be combined with this
condition to obtain a prediction of when total penetration occurs based upon initial
conditions of the thermal and environment.

3.3. Type-SG environment

The equation for the penetration depth of the leading edge is conditional upon
whether or not the thermal completely penetrates the interface before coming to rest.
Equations (3.1)–(3.3) are solved, as outlined above for a neutral environment, for the
three domains defined by equation (3.4). Additional constraints are matching V and
B1 at z1 and z2. If the thermal comes to rest before the trailing edge reaches the
interface, the equation for ζp is

ζ4
p − γ′

24
(3ζ8

p − 8ζ6
p + 6ζ4

p − 1)− γ

6
(4ζ6

p − 6ζ4
p + 2) = 0, ζp 6 µ. (3.8)

And, if the thermal moves completely into the gradient layer, the equation is

ζ4
p − γ′

24
(3µ8 − 8µ6 + 6µ4 − 1)− γ′

4
(ζ4
p − µ4)(µ4 − 1)2 − l(2− l)γ′

8
(ζ4
p − µ4)2

−γ
6

(4µ6 − 6µ4 + 2)− γ

4
(ζ4
p − µ4)(µ2 − 1) = 0, ζp > µ. (3.9)

If γ is set to zero (no step change between the neutral and gradient layers), (3.8) and
(3.9) reduce to Saunders’ equation 24.

Equation (3.8) cannot be solved explicitly for ζp as a function of γ and γ′, but by
choosing values for two of the variables, say ζp and γ′, the associated value of the
third, γ, may be found. By repeating for additional values, a graphical representation
may be obtained.

Equation (3.9) can be solved by rewriting it as a quadratic in (ζ4
p−µ4) and applying

the quadratic formula. This gives

zmx + zv =

[
µ4 +

(−B ± (B2 − 4AC)1/2

2A

)]1/4

(z1 + zv), (3.10)

where A = −l(2 − l)γ′/8, B = 1 − (γ′/4)(µ2 − 1)2 − (γ/4)(µ2 − 1), and C = µ4 −
(γ′/24)(3µ8 − 8µ6 + 6µ4 − 1)− (γ/6)(4µ6 − 6µ4 + 2).

From dimensional analysis, a parameter to characterize the buoyancy of a thermal
relative to the strength of an elevated gradient in the atmosphere may be defined as

PT = F
1/4
T /[(z1 + zv)N

1/2], where FT = Vog(ρ1−ρo)/ρ1 = Mg/ρ1, the buoyancy of the
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Number Cup Release
Data of diameter volume
set releases (cm) (cm3) nc σnc σnc/nc n1 σn1

σn1
/n1

Group 1 16 10 150 3.43 0.46 0.13 4.15 0.46 0.11
Group 2 8 7.6 50 4.61 0.36 0.08 5.23 0.36 0.07
Group 3 8 10 50 3.46 0.51 0.15 4.04 0.53 0.13

Scorer (1957) 18 15.2 500 3.84 0.68 0.18
(estimated)

Table 1. Linear growth rates of thermals for type-N experiments.

thermal in the neutral layer. PT is related to γ′ as follows:

PT =
F

1/4
T

(z1 + zv)N1/2
=

[
M

(z1 + zv)(dρ/dz)

]1/4

=

[
[V1/(z1 + zv)

3]/2l

(dρ/dz)V1(z1 + zv)/2lM

]1/4

=
[V1/[2l(z1 + zv)

3]]1/4

γ′1/4
(3.11)

[V1/[2l(z1 + zv)
3]1/4 is a constant that will be determined. Henceforth, we will use

PT rather than γ′ as the measure of the initial buoyancy of the thermal relative to
the elevated gradient to make application of our results to the atmosphere more
straightforward.

4. Results
The results of the neutral (type-N) experiments will be presented first to demonstrate

the inherent variability (as expected for turbulent processes) in the growth of thermals.
Next, we present the results of the step-change environment (type-S) experiments
which are used to better define the growth rates of the thermal dimensions and
volumes while in a neutral layer and to establish a formula for the fraction Pf
of a thermal that penetrates an elevated density jump. Finally, observations of the
maximum penetration depth, the equilibrium height, and thickness at the equilibrium
position of a thermal that encounters an elevated gradient (type-G) environment are
presented. This final section includes two cases with a step change in density at the
base of the elevated gradient (type-SG).

4.1. Type-N environment

The tank was filled with fresh water to create a neutral environment. A total of 32
releases was made in three groups comprising two cup sizes and two release volumes.
All had nominal mass excesses of 15 g above the mass of water displaced (150 or
50 g). Table 1 summarizes the details of the three groups of releases. In addition, we
include results from Scorer’s (1957) experiments which were conducted with a 15.2 cm
diameter cup and a water depth of 107 cm (cf. 108 cm in the current experiments).

A graph of the front- and side-view dimensions versus the depth of the centroid
was made for each of these releases and used to determine the virtual origin and the
growth coefficient nc from a hand-drawn line through the data. An example of such
a plot for a release from the first group is shown in figure 6. Similar procedures were
followed using the depth of the leading edge to determine n1. As observed by Scorer
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Figure 6. Maximum horizontal dimensions versus depth of centroid for a typical type-N
experiment: 4, front view; �, side view.

(1957) and Richards (1961), each thermal was observed to have a constant n1 (and
nc) while passing through the neutral layer. The inherent variability in the falling
turbulent thermals manifests itself in the strong differences observed in the values of
n1 and nc from thermal to thermal. The mean values of the coefficients (nc and n1),
their standard deviations (σnc and σn1

) and the ratios of the standard deviations to
the means are shown in table 1 for each of the three groups. The variability in these
coefficients, expressed as the ratio of the standard deviation to the mean, is seen to
range from 7% to 15% for both n1 and nc in each of the three groups; the variability
in n1 is somewhat less than that observed by Scorer (1957). An expression for the
thermal volume as a function of depth will be discussed later in conjunction with the
results for the type-S environment.

The two groups of releases (1 and 3) from the 10 cm diameter cup had different
volumes (and densities) of material released. The mean values of both nc and n1

for these groups were essentially the same. This suggests that the growth rate is
independent of the release volume. The thermals released in group 2 (smaller cup,
but same volume as group 3), however, resulted in somewhat larger values of nc and
n1, that is, a smaller lateral dimension at a given height than for groups 1 and 3.
The first and second groups have nearly equivalent initial geometric shapes (close to
a hemisphere, but slightly truncated), while the shape for the third group is much
thinner in the vertical dimension. The parameter in common for the first and third
groups is the cup diameter. From these limited experiments, we speculate that the
initial radius of curvature of the thermal’s leading edge, as determined by the cup
diameter, influences the growth rate much more than the initial vertical thickness.†
Scorer’s (1957) result is consistent with the trend of the current data (table 1) in
that his n1 and cup diameter are less than and greater than those in groups 1 and 3,
respectively. Additional experiments would be required to better resolve the specific
influences of cup radius and initial fluid geometry on n1 and nc.

Obtaining large mass-excess values required use of the larger release cup (10 cm
dia.) with a release volume of 150 cm3. Thus, the large cup and 150 cm3 volumes were

† A reviewer wondered ‘if the variation of n1 on cup size seen in the current results can be
attributed to possible variations in circulation generated during the development of the thermal’.
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Leading edge Centroid
Case zi ρ2 − ρ1 M zv zv
no. (cm) (gl−1) (g) (cm) n1 n2 (cm) nc Pi Pf

1 28.5 2.60 15.3 20 5.45 20 4.29 0.95 0.90
2 28.5 2.70 15.3 25 6.25 20 4.80 0.95 0.90
3 28.5 2.70 15.3 20 5.45 20 4.44 0.95 0.90
4 28.5 2.70 15.3 25 6.25 3.33 20 4.53 0.95 0.90
5 28.0 2.60 4.50 20 5.45 2.6 15 4.26 0.50 0

19 39.0 2.30 20.1 15 3.90 15 3.33 0.95 0.90
20 39.0 2.30 17.9 15 4.79 1.93 14 3.50 0.95 0.90
65 32.5 2.15 9.87 20 5.71 20 4.62 0.95 0.90
66 32.5 2.15 9.87 15 3.97 100 15 3.00 0.50 0.30
67 32.5 2.15 9.87 18 4.45 2.67 15 3.33 0.85 0.15

Table 2. Samples of initial conditions and measured growth rates for type-S experiments. A
complete table showing all cases is available from the JFM Editorial Office.
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Figure 7. Maximum horizontal dimensions versus depth of leading edge for two type-S
experiments. Case 19: 4, front-view; �, side-view. Case 20: N, front-view; �, side-view.

used for the remaining experiments, and the mass excess was varied by adjusting the
density of the released liquid. The release shapes are, thus, roughly hemispherical.

4.2. Type-S environments

Table 2 shows the initial conditions for the 67 releases that were made into type-S
environments, some of the results obtained from the video analysis, and the observed
initial fraction of penetration Pi and final fraction of penetration Pf . The growth of
each thermal’s horizontal dimension was plotted for each of the cases, as a function
of z and as a function of zc. The growth coefficients n1 and nc were determined
from the slopes of hand-drawn lines through the data in the neutral layer prior to
the thermal reaching the interface. In somewhat less than half the cases, the lateral
growth rate changed at the interface. This change may be expressed as a change in the
growth coefficient from n1 to n2. If such a change occurred, usually for weak thermals,
the new rate n2 was included in table 2 to the right of the value of n1. For weak
thermals with little mass penetration, this change in growth rate is less meaningful
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Figure 8. Horizontal growth coefficient versus penetration fraction for type-S experiments and
mean horizontal growth coefficients for type-N experiments. Type-S: e, individual cases; —, mean
value. Type-N mean: 4, group 1; 5, group 3. Dashed line is a least-squares fit to data. Error bars
are ±σn.

Cases n1 σn1
σn1
/n1 nc σnc σnc/nc

All 4.73 0.75 0.16 3.57 0.74 0.21
Pf < 0.5 4.07 0.5 0.12 2.95 0.54 0.18
Pf > 0.5 5.15 0.56 0.11 3.97 0.57 0.14

Richards 3.96 1.27 0.32
(1961)

Table 3. Summary of statistics of thermals in the neutral layer.

than for cases with greater penetration. Figure 7 shows the growth of the front- and
side-view dimensions of thermals as a function of the depth of the leading edge for
two ostensibly identical releases, both with a final penetration of 0.9. In addition to
showing the variability in n1, one of the cases (no. 20) exhibits a sharp increase in the
lateral growth rate after passing the interface, from n1 = 4.8 to n2 = 1.9.

Figure 8 presents n1 versus Pf for all of the type-S experiments and suggests that
n1 separates into two distinct groups: low Pf(< 0.5) cases or weak thermals and high
Pf(> 0.5) cases or strong thermals. Based on this separation, we have computed n1

and σn1
, for each group as well as over all cases (table 3). Figure 8 shows that n1±σn1

for one group overlaps little with the other and the n1 and σn1
for the low-Pf group

are consistent with the values for the type-N experiments with the 10 cm diameter
cup (table 1, groups 1 and 3; see also figure 8). In addition, table 3 gives the statistics
for nc and shows that nc for the two subgroups are distinct; they differ by about 2σnc .

The separation into two Pf groups could be due in part to an overall scarcity of
data and in particular for the interval 0.3 6 Pf 6 0.7. An alternative interpretation
of figure 8 is that n1 varies linearly with Pf as suggested by the dashed line, which
is a least-squares fit to the data. However, given the data scatter and paucity over
the entire Pf range and to simplify the following analyses, we divide the n1, thermal
volume, and other properties into the low- and high-Pf groups.
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Figure 9. Horizontal growth coefficient versus ratio of interface depth to initial radius for type-S
and type-N environments. For type-N, z1 is fresh water depth. Type-S, Richards (1961): �, strong
thermals; �, weak thermals. Type-S, current work: e, Pf < 0.5, •, Pf > 0.5. Type-N, Scorer
(1957): N, (z1 + zy)/ro = 18. Type-N, current work: 4, Group 1, (z1 + zv)/ro = 22; 5, Group 2,
(z1 + zv)/ro = 28; �, Group 3, (z1 + zv)/ro = 28.

Table 3 also presents the n1 statistics for Richards’ (1961) experiments, which were
conducted with a 10 cm diameter cup and a variable initial volume. His data, which
include both strong and weak thermals, yield an n1 lower than our overall mean (4.73)
and closer to the n1 for the low-Pf group. However, close inspection of Richards’ data
suggests that his results were influenced by a rather small ratio of interfacial depth,
z1 + zv , to the initial radius ro as discussed below.

Figure 9 is a plot of n1 versus (z1 + zv)/ro for all data sets and displays three
features. First, Richards’ n1 (squares) exhibit a correlation with (z1 + zv)/ro over the
range 3 . (z1 + zv)/ro . 8 with no discernible difference between his strong and
weak thermals. The correlation is attributed to an insufficient depth for the thermal
to fall freely and establish its circulation pattern (e.g. see Saunders 1962) before the
latter is affected by the density interface (at z1). Second, our n1 for strong thermals
(closed circles) is consistent with Richards’ data near (z1 + zv)/ro ∼ 8 and exhibits no
significant trend over the range 8 . (z1 + zv)/ro . 14. Third, our n1 for weak thermals
(Pf < 0.5, open circles) exhibits no trend for 8 . (z1 + zv)/ro . 12 and has a mean
(dashed line) consistent with Scorer’s (1957) data and the neutral tank data (groups
1 and 3; table 1). The consistency of the n1 for the low-Pf cases with the latter data
sets, which had large (z1 + zv)/ro ratios (18–25), suggests that n1 was independent of
(z1 + zv)/ro in our experiments.

In the following, we estimate the thermal’s volume from equation (3.3) by intro-
ducing a mean distance from the surface to the virtual origin, zv . In principle, zv
should be the same whether inferred from the leading edge or centroid position. We
determined the mean zv to be 18 and 15.2 cm when based on z and zc respectively, but
found that these values were within one standard deviation (3.4 cm) of one another.
Given the small difference in the mean zv , we simply use zv = 15 cm.

A comparison of the depth of the leading edge to the depth of the centroid for all
type-S cases is made in figure 10 to obtain a relationship between z and zc that will
be useful later. Figure 10 suggests that zc + 15 = 0.83(z + 15). From the definition of
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Figure 11. Vertical dimension versus horizontal dimension for high-Pf . (a) and low-Pf (b) type-S
cases; dashed and solid lines correspond to DV/DH = 0.7 and 0.8, respectively.

l as the ratio of the vertical dimension of the thermal to its distance from the virtual
origin (l = DV/(z + zv)), it may be shown that zc + zv = (1 − l/2)(z + zv), and thus,
l = 0.34. Because of the small scatter of the points in figure 10, we conclude that
zc and z are equally useful parameters for characterizing a thermal’s position. The
billowy nature of thermals does not appear to result in excessive scatter when using
the leading edge to define the thermal’s position. Visual observations suggested that
the particular shape of a thermal, including specific protrusions, is established quite
early and is closely maintained as the thermal grows; this is consistent with the small
scatter displayed in figure 10 and with Scorer’s (1957) results.

The shape of a thermal may be approximated by an oblate spheroid which is
characterized by DV/DH , where DV and DH are the vertical and lateral dimensions of
the thermal. Estimates of DV/DH are necessary to predict the thermal volume below
and are obtained here in two ways. In the first, we find DV/DH from plots of DV
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Estimated DV/DH Predicted βc

Case n1 nc #1 #2c #1 #2 Observed βc

S, Pf < 0.5 4.07 2.95 0.63a 0.69 0.100 0.110 0.090
N 4.10 3.44 0.70b 0.70 0.072 0.072 0.058

S, Pf > 0.5 5.15 3.95 0.80a 0.88 0.054 0.060 0.058

Table 4. Variation of mean parameters for type-N and type-S environments. a From figure 11,
b from Turner (1964), c from DV/DH = 0.17 n1.
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Figure 12. Measured volumes of thermals at selected depths, including all releases into type-S and
150 cm3 releases into type-N environments. 4, type-S with Pf > 0.5; �, type-S with Pf < 0.5; e,
type-N.

versus DH as given in figure 11, which shows a clear difference between the low- and
high-Pf type-S cases. For Pf > 0.5 (figure 11a), the data exhibit an approximately
linear variation of DV with DH and a mean DV/DH of 0.8 (solid line). This DV/DH
is greater than the value for a neutral environment (DV/DH ' 0.7, dashed line),
as deduced by Turner (1964) using Richards’ (1961) and Scorer’s (1957) data. For
Pf < 0.5 (figure 11b), the data approximately match the neutral behaviour (dashed
line) or perhaps DV/DH ∼ 0.75 for small depths (where DH 6 30 cm), but on average
fall below the neutral value for DH > 30 cm. An approximate mean DV/DH over the
entire data range is 0.63. Hence, with insufficient buoyancy to penetrate the density
interface, the low-Pf thermals are squashed as zc approaches z1. In contrast, the DV
for the high-Pf cases appears to be unaffected on average by the density jump as
the thermal approaches and passes through the jump. Moreover, the mean DV/DH
exceeds that for the neutral environment.

A second DV/DH estimate can be obtained using the n1 values from tables 1 and
3 and the mean l = DV/(z + zv) from figure 10, which exhibits little scatter. Since
n1 = (z + zv)/r = 2(z + zv)/DH , we have DV/DH = ln1/2 = 0.17 n1. Table 4 compares
this DV/DH (method 2) with that from method 1 and shows that the two are within
10% of one another; for the type-N cases, the estimates are identical.

The volume of each thermal was determined when its centroid was at specific depths
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Figure 13. Average measured volumes for all releases into type-S and 150 cm3 releases into type-N
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(15, 20, 25, 30 and 40 cm) by using hand-drawn curves through individual plots of
volume versus zc. The values obtained are shown as a function of zc in figure 12,
where the lines are drawn through the mean for each type. Only positions before the
thermal’s centroid reached the interface were used. For some weak thermals that did
not substantially penetrate the interface, the volume was observed to increase more
rapidly than those that easily penetrated, consistent with the n1 and DV/DH variation
with Pf (figures 8 and 11). Based on the n1 analysis, we present the volume data in
three groups: type-S experiments with Pf < 0.5, type-S experiments with Pf > 0.5,
and type-N experiments with 150 cm3 releases. Figure 12 shows that the results for
type-S with Pf > 0.5 fall close to the type-N results, whereas the type-S cases with
Pf < 0.5 have somewhat larger volumes.

The mean observed volumes as a function of depth are plotted on logarithmic
axes in figure 13 to determine a cubic fit to the data. The line V = βc(zc + zv)

3 =
0.058(zc + zv)

3 is seen to be a good approximation to the type-N and high-Pf type-S
cases. For low Pf , the βc increases with depth until zc + zv = 40 cm (dashed line) and
then remains constant with V = 0.090(zc + zv)

3 (solid line). The increase in βc with
depth is due to the density interface, the thermal’s inability to penetrate it, and the
change in the thermal geometry as a result (figure 11b).

A predicted volume can be expressed by Vp = βcp(zc + zv)
3, where βcp =

(4π/3)(DV/DH )/n3
c . Table 4 presents the βcp based on the estimates and nc values

and compares them to the observed βc. The comparison shows that the predictions
are within about 20% of the observations and that they are in closest agreement for
the high-Pf cases. The differences between βcp and the observed βc for the low-Pf
and type-N cases could be due to: (i) errors and/or uncertainty in the mean DV/DH ,
(ii) random variability in nc and DV/DH , and (iii) for type-S, variations in the mean
DV/DH and nc with depth, especially near z1. We note that for low Pf , the prediction
would decrease to βcp = 0.091 if we use a DV/DH (= 0.56) more representative of the
late stage of the thermal, i.e. when it is clearly confined and distorted by the density
jump (figure 11b for DH > 30 cm). The latter βcp is in excellent agreement with the
observed βc(= 0.090).

The above predictions and discussion show the importance of DV/DH , nc, and
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related parameters in determining the thermal volume as well as the sensitivity of Vp
to the former. Table 4 presents a natural ordering of the results showing how the
density interface can have either a negative (low Pf) or positive (high Pf) effect on the
entrainment coefficients (n1, nc) and DV/DH relative to the parameters for a neutral
(type-N) environment. At first sight, a perplexing result is that the n1 values for the
low-Pf and type-N cases agree whereas the nc values differ. However, the differences
in the n1 and nc for the two cases are within their respective standard deviations. In
addition, one might believe that the type-N parameters should agree better with the
high-Pf results (as the volumes do) because type-N is, in a sense, an infinitely strong
thermal since the interfacial jump is zero; but this is not observed. Further studies are
necessary to explain the n1, nc, and DV/DH variation with Pf in terms of the thermal
dynamics and overlying stratification.

An expression for the thermal volume as a function of the depth of the leading edge
z can be obtained from the relationship between z and zc [zc + zv = 0.83(z + zv)] and
that determined earlier between β and βc. From V = β(z+zv)

3 = 0.058[0.83(z+zv)]
3 =

0.033(z+ zv)
3, we have β = 0.033 for the type-N and high-Pf type-S cases. The depth

to the leading edge can be predicted from equation (3.6), given α, the virtual mass
coefficient. To determine α, we can use equation (3.6), with Wo = 0 (our thermal starts
from rest at t = 0), to get (z + zv)

4 − (zo + zv)
4 = [t2/(βρ1/2gM)]/α. Our data are

shown in figure 14 plotted as the left-hand side of this equation against the term in
brackets on the right-hand side. Because equation (3.6) was derived for and strictly
applies only in the neutral layer, only observations of thermals with depth less than
the interface depth were included in figure 14. Lines are drawn for α = 1.0, 1.25, and
1.50. The line for α = 1.25 is seen to be a reasonable fit to the data and this value
should be used in equation (3.6).

Richards (1961) established an empirical expression for the fraction of a thermal
that penetrates a step-change interface. He defined a parameter S = V (ρ2−ρ1)/M as
a measure of the strength of the density difference compared with the buoyancy of the
thermal as it straddled the interface. V is the measured volume of the thermal when
its widest span is at the interface. Richards found that the fraction of the thermal
that penetrated the interface decreased linearly as S increased from 0 to 1.9, with no
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Figure 15. Initial penetration versus Richards’ S (uses measured volume).
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Figure 16. Final penetration versus Richards’ S (uses measured volume). Open symbols and
dashed line are from Richards (1961); solid symbols are current data.

penetration above S = 1.9. For the current experiments, we used plots of the observed
volume versus zc to determine V when the centroid was at the interface. Observations
of the initial penetration are shown as a function of S in figure 15. The largest Pi was
0.95 because approximately 5% of each thermal was estimated to remain in a tail
that formed behind the thermal (cf. figure 2). A simple hand-drawn approximation
to Pi, as shown by the line in figure 15, may be written

Pi =


0.95, S < 2

0.5(3.9− S), 2 6 S 6 3.9

0, 3.9 < S.

For most thermals, some of what initially penetrated the interface returned to
the interface as discussed earlier, and thus it is more useful to consider the final
penetration. Final penetration is shown plotted against S in figure 16, and on average,
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Figure 17. Final penetration versus ∆.

it is seen to be much less than the initial penetration at a given S . A simple
approximation for the final penetration, as shown by the solid line in figure 16, is

Pf =


0.95, S < 1

0.5(2.9− S), 2 6 S 6 2.9

0, 2.9 < S.

Richards’ (1961) observations were of final penetration and his results are included
in this figure (as open symbols). His approximation, shown as the dashed line, is

Pf(Richards) =


1.00, S < 0.1

0.5(1.9− S), 0.1 6 S 6 1.9

0, 1.9 < S.

Note that our line is parallel to Richards’ but is shifted to larger S . On physical
grounds, we have difficulty accepting his results. For example, consider a thermal
falling through a layer of fresh water into a fluid layer of higher density. This thermal
approaches the interface with a value of S less than 1 and, thus, has an average density
greater than that in the lower layer. Given this and its positive momentum, the thermal
may be expected to continue falling, resulting in essentially total penetration. Our
results are in better agreement with this argument than are Richards’; his results
suggest a Pf of only 0.50 when S = 0.9.

We recommend use of the formula Vp = 0.058(z1 + zv)
3 to predict the volume

of a thermal when its centroid is at the interface, and define a parameter ∆ =
0.058(z1 + zv)

3(ρ2 − ρ1)/M. We use this parameter to predict the penetration a priori.
Final penetration is plotted against ∆ in figure 17, where as a simple approximation
for prediction, the line ∆ = 1.35 is used to divide the data into either total or
no penetration of the interface. Saunders’ theory, as described above, predicts total
penetration when γ(µ2 − 1) < 1. Using our empirical results (namely, β = 0.033 and
l = 0.34), his expression may be reworked to show that total penetration occurs
when ∆ < 0.92. This value is shown as the dashed line in figure 17 and is seen to
underestimate the penetration capability of a thermal in our experiments. On the
other hand, Saunder’s prediction using our empirical results is a conservative estimate
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z1 dρ/dz × 104 M zmx zeq σz
zmx − z1

z1 + zv

zeq − z1

z1 + zv

σz

z1 + zv
Mass

Case (cm) (g cm−4) (g) PT (cm) (cm) (cm) check

28 30 1.1 14.7 0.42 75 49.8 7.6 1.00 0.44 0.17 1.06
29 30 1.1 14.7 0.42 80 52.4 8.2 1.11 0.50 0.18 1.11
30 30 1.1 14.7 0.42 75 51.6 7.8 1.00 0.48 0.17 1.08
31 30 1.1 14.7 0.42 70 48.3 6.3 0.89 0.41 0.14 1.22
55 32 3.6 29.6 0.36 55 44.7 3.5 0.49 0.27 0.07 0.95
56 32 3.6 29.6 0.36 55 42.6 3.5 0.49 0.23 0.07 0.95
57 32 3.6 29.6 0.36 60 44.4 4.2 0.60 0.26 0.09 1.08
58 32 3.6 29.6 0.36 65 47.0 4.1 0.70 0.32 0.09 1.08
59 32 3.6 29.6 0.36 65 49.0 3.8 0.70 0.36 0.08 0.93
60 32 3.6 29.6 0.36 55 44.0 3.4 0.49 0.26 0.07 0.89
61 32 3.6 29.6 0.36 65 42.3 3.4 0.70 0.22 0.07 0.99
62 32 3.6 29.6 0.36 65 48.6 3.7 0.70 0.35 0.08 0.97

109 49 1.1 5.3 0.23 65 53.5 2.8 0.25 0.07 0.04 1.42
110 49 1.1 5.3 0.23 65 53.8 2.9 0.25 0.07 0.05 1.20
111 49 1.1 5.3 0.23 70 54.6 3.8 0.33 0.09 0.06 1.33

Table 5. Samples of test conditions and observations for type-G environments. A complete table
showing all cases is available from the JFM Editorial Office.

of complete or no penetration in that only near complete penetration do data fall to
the left of the dashed line. For the solid line, four points with Pf 6 0.5 lie to the left
of the solid line and therefore the empirical estimate of ∆ = 1.35 grossly overpredicts
the penetration capability for these four cases.

4.3. Type-G and type-SG environments

When released into a neutral layer followed by a constant-density-gradient region,
a thermal will move only a finite distance before coming to rest with z = zmx. The
thermal’s momentum will result in an overshoot of the equilibrium position to one
where the buoyancy is negative; the thermal will then move back toward the neutral
layer. It will eventually come to rest with its centroid at an equilibrium height zeq . As
discussed in § 3, the thermal may or may not completely enter the gradient layer before
coming to rest. The range of experiments conducted here included both situations.
In addition to several experiments with a type-G environment, two experiments were
conducted with a type-SG environment.

Twelve sets of experiments were conducted with a type-G environment; the initial
conditions and selected results are listed in table 5. All but one set (of four repetitions)
consisted of six to eight repetitions. Within these twelve sets z1 was varied from 19 to
49 cm, dρ/dz was nominally 0.0001 or 0.0004 g cm−4, and M was varied from 5.0 to
35 g. The total volume of each release was 150 cm3, of which 75 cm3 was blue dye.

For each experiment, zmx was observed and recorded. Just after the thermal reached
its equilibrium depth, the sample rake was towed through it. The measured dye concen-
trations were used to compute the mass of dye in the horizontal layer corresponding
to each horizontal group of ten sampling ports. Examples of the vertical distribution
of dye for eight repetitions of an experiment are shown in figure 18. These distri-
butions were used to compute the vertical position of the centroid (centre of mass)
and the vertical spread (expressed as the standard deviation of the mass distribution)
for each experiment. A check on the integrity of this method was made by summing
the masses of dye in the layers and calculating the ratio of this sum to the mass of
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Figure 18. Vertical distribution of tracer (dye, by volume) for eight type-G cases (nos. 55–62).
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Figure 19. Maximum penetration depth beyond the interface (solid symbols) and equilibrium depth
of centroid (open symbols) for type-G and type-SG experiments. Line is Saunders’ (1962) theory
for maximum penetration for type-G environment. N, 4, type-G; •, e, type-SG. Sample error bars
indicate typical grid resolution (±2.5 cm).

dye released; ideally, the ratio should be 1. This mass continuity check, as listed in
the last column of table 5 for all 84 releases, had a mean value of 1.06 and standard
deviation of 0.11, which is regarded as quite good considering the coarse spacing of
the sampling ports.

The observed maximum penetration depths for all experiments are plotted against
PT in figure 19. For the type-G experiments (solid squares and triangles), Saunders’
theoretical prediction (using our empirical values for β and l) was used to obtain the
solid line that is seen to be a good fit to the observations. The equilibrium depths
(open symbols) are also shown in figure 19. There is no theoretical prediction for
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Figure 20. Equillibrium depth of centroid compared with maximum penetration depth: 4,
type-G; •, type-SG.
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Figure 21. Maximum penetration depth beyond the interface for type-SG and type-G experiments:e, type-G observation; 4, type-SG observation; •, type-SG predictions. Lines are theoretical
predictions for values of γ as specified. Sample error bars indicate typical grid resolution (±2.5 cm).

the equilibrium depth, but as seen in figure 20, zeq is related to zmx and can be
approximated by the formula (zeq − z1)/(z1 + zv) = 0.47[(zmx − z1)/(z1 + zv)]

1.52. (This
formula is applicable only over the range shown.)

Two experiments (with seven repetitions of each) were conducted with a type-SG
environment. The density profile for these experiments was shown in figure 1, and
the initial conditions and selected results are listed in table 6. According to the
theoretical arguments presented in § 3, the thermal should completely penetrate the
interface before reversing direction at zmx for both cases (PT = 0.49 with γ = 1.13
and PT = 0.59 with γ = 0.55). The visual observations of the maximum depth of
penetration are shown as the open triangles in figure 21 (only seven symbols appear,
but fourteen realizations are represented; several had identical results. See table 6).
Two non-dimensional parameters are required to characterize this situation: γ and PT .
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zeq σz
zmx − z1

z1 + zv

zeq − z1

z1 + zv

σz

z1 + zv
Case (g) PT γ zmx (cm) (cm) (cm) Mass check

112 14.9 0.49 1.13 50 30.6 6.6 0.63 0.14 0.17 1.32
113 14.9 0.49 1.13 50 30.9 5.9 0.63 0.15 0.15 1.32
114 14.9 0.49 1.13 60 33.8 8.8 0.88 0.22 0.22 1.26
122 30.3 0.59 0.55 80 48.4 12.2 1.38 0.59 0.31 0.91
123 30.3 0.59 0.55 65 42.5 8.0 1.00 0.44 0.20 1.17
124 30.3 0.59 0.55 75 46.4 9.9 1.25 0.54 0.25 1.09
125 30.3 0.59 0.55 55 36.9 7.4 0.75 0.30 0.19 1.27

Table 6. Samples of test conditions and observations for type-SG environments. For all cases:
zi = 25 cm, ρ2 − ρ1 = 0.006 g cm−3, and dρ/dz = 0.0001 g cm−4. A complete table showing all cases
is available from the JFM Editorial Office.
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Figure 22. Vertical spread of thermals at equilibrium height as function of PT :
4, type-G; •, type-SG.

This figure was prepared using PT as the abscissa and drawing lines corresponding
to various values of γ. The theoretical predictions for the two sets of experimental
conditions studied are shown on the figure as filled circles and are seen to serve as
an upper bound for the observations. For completeness, the observations discussed
earlier with no step change are also included (open symbols) and should be compared
with the theoretical line γ = 0. The observations with a step change are somewhat
below the line for cases with no step change, but additional measurements should be
considered before drawing firm conclusions.

The vertical spread (standard deviation about the centroid) of the thermals just
after reaching the equilibrium height is shown as a function of PT in figure 22 and as
a function of zmx in figure 23. Hand-drawn lines are included on these figures, with
the dashed line on figure 23 for the type-SG cases. Either PT or zmx could be used to
predict the vertical spread for the type-G situations by using the solid line through
the data in those figures. For the type-SG environment modelled here, however, the
vertical spread is increased significantly and more experiments with varied values
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Figure 23. Vertical spread of thermals at equilibrium height as function of maximum penetration
depth: 4, type-G; •, type-SG.

of gradient and density difference at the base are needed to determine a prediction
algorithm.

5. Summary
Open detonation is the most frequently used method of disposing of obsolete

munitions. Current detonation activities are limited to the daytime CBL in order
to maximize dispersion rates of the contaminant clouds and to minimize long-range
transport of high-concentration clouds. Information on the behaviour of the thermal
cloud and interaction with an elevated inversion is necessary for the development of
cloud models.

Laboratory experiments were undertaken to investigate the rise and spread of
buoyant thermals and their inversion penetration capability. The thermal rise was
simulated by the descent of negatively buoyant fluid within a tank of quiescent
water. The experimentally generated thermals descended either through a neutral
environment (type-N) or a neutral layer of depth z1 followed by a stably stratified
region. The stable region consisted of: (i) a step change in density (type-S), (ii) a
constant-gradient layer (type-G), or (iii) a combination of the above two (type-SG).
These density structures simulate the variation in the potential temperature profiles
capping the CBL and thus the types of conditions likely to be encountered by a
full-scale detonation cloud.

For the neutral environment, the thermal growth was similar to that found by
Scorer (1957) – a linear increase in the thermal horizontal dimension DH with depth
z. Specifically, DH = 2(z + zv)/n1, where n1 was approximately constant for a given
thermal but exhibited less than 15% variability about its mean value n1 of about 4
(groups 1 and 3, table 1). The n1 values for the low-penetration (Pf < 0.5) type-S
cases was consistent with the above n1, and both neutral and low-Pf values were
consistent with the n1 (= 3.84) found by Scorer. For the high-Pf type-S cases, n1

was somewhat larger (5.15), implying a slower entrainment rate. In contrast with
these results, the thermal volume as a function of depth exhibited more consistency
between the type-N and high-Pf type-S cases due to the variation in DV/DH with the
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environment type (N and S) and Pf (table 4). The average observed volume for these
cases (type-N, high-Pf type-S) was found to be V = 0.058(zc + zv)

3 , and the predicted
V based on the nc and DV/DH agreed to within about 20% of the observed values.
Similar agreement was found between the predicted and observed volumes for the
low-Pf type-S cases.

Thermal penetration of the interface (type-S) was observed to decrease linearly
with the dimensionless parameter S = V (ρ2 − ρ1)/M as S increased from 1 to 2.9,
where V is the observed volume when zc = z1. The qualitative behaviour of Pf versus
S was similar to that found by Richards (1961) but occurred over a different S range
(1 to 2.9) compared with Richards’ (0.1 to 1.9). As a simplified procedure useful in
applications, we developed a penetration criterion based on the average volume of
penetrating thermals and a dimensionless parameter ∆ = Vp(ρ2 − ρ1)/M where Vp
is the predicted volume at the interface (= 0.058(z1 + zv)

3). A value of ∆ = 1.35
was generally found to separate the non-penetrating thermals (∆ > 1.35) from the
penetrating ones (∆ < 1.35).

For the experiments with the elevated gradient layer (type-G), the observed maxi-
mum penetration depth zmx agreed well with Saunders’ (1962) theoretical prediction.
In addition, the thermal equilibrium height and vertical spread exhibited a systematic
dependence on zmx and/or the parameter PT = (Mg/ρ1)

1/4/[(z1 + zv)N
1/2]. Limited

experiments with a step change in density at the base of the constant-gradient layer
(type-SG) showed that an extension of Saunders’ theory was useful in predicting
the maximum penetration distance. However, additional experiments are required to
develop a prediction algorithm for the equilibrium depth and vertical spread.

The experimental results described in this paper and obtained in a quiescent
environment are being used in the development of a dispersion model for open
detonation clouds (Weil et al. 1996). The next step in the development is a series of
experiments in the presence of ambient convectively generated turbulence, i.e. in a
laboratory convection tank. Such experiments are in progress and will be reported in
a future paper.
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